Improving the Reliability of Causal Discovery from Small Data Sets Using Argumentation

نویسندگان

  • Facundo Bromberg
  • Dimitris Margaritis
چکیده

We address the problem of improving the reliability of independence-based causal discovery algorithms that results from the execution of statistical independence tests on small data sets, which typically have low reliability. We model the problem as a knowledge base containing a set of independence facts that are related through Pearl’s well-known axioms. Statistical tests on finite data sets may result in errors in these tests and inconsistencies in the knowledge base. We resolve these inconsistencies through the use of an instance of the class of defeasible logics called argumentation, augmented with a preference function, that is used to reason about and possibly correct errors in these tests. This results in a more robust conditional independence test, called an argumentative independence test. Our experimental evaluation shows clear positive improvements in the accuracy of argumentative over purely statistical tests. We also demonstrate significant improvements on the accuracy of causal structure discovery from the outcomes of independence tests both on sampled data from randomly generated causal models and on real-world data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Reliability of Causal Discovery from Small Data Sets using the Argumentation Framework

We address the problem of reliability of independence-based causal discovery algorithms that results from unreliable statistical independence tests. We model the problem as a knowledge base containing a set of independences that are related through the well-known Pearl's axioms. Statistical tests on finite data sets may result in errors in these tests and inconsistencies in the knowledge base. ...

متن کامل

Bayesian Probabilities for Constraint-Based Causal Discovery

We target the problem of accuracy and robustness in causal inference from finite data sets. Our aim is to combine the inherent robustness of the Bayesian approach with the theoretical strength and clarity of constraint-based methods. We use a Bayesian score to obtain probability estimates on the input statements used in a constraint-based procedure. These are subsequently processed in decreasin...

متن کامل

Simultaneous Reliability Evaluation of Generality and Accuracy for Rule Discovery in Databases

This paper presents an algorithm for discovering conjunction rules with high reliability from data sets. The discovery of conjunction rules, each of which is a restricted form of a production rule, is well motivated by various useflll applications such as semantic query optimization and automatic development of a knowledge base. In a discovery algorithm, a production rule is evaluated according...

متن کامل

An Evolutionary Method for Improving the Reliability of Safetycritical Robots against Soft Errors

Nowadays, Robots account for most part of our lives in such a way that it is impossible for usto do many of affairs without them. Increasingly, the application of robots is developing fastand their functions become more sensitive and complex. One of the important requirements ofRobot use is a reliable software operation. For enhancement of reliability, it is a necessity todesign the fault toler...

متن کامل

Reliability-based maintenance scheduling of powered supports in Tabas mechanized coal mine

Utilizing the gathered failure data and failure interval data from Tabas coal mine in two years, this paper discusses the reliability of powered supports. The data sets were investigated using statistical procedures and in two levels: the existence of trend and serial correlation. The results show that the powered supports follow the Gamma reliability function. The reliability of the machine de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2009